

Amish Sethi

132 Blue Heron Dr. • Wexford, PA 15090 • (724) 719-4156
asethi04@seas.upenn.edu

EDUCATION

University of Pennsylvania

Senior – Computer Science (B.S.E. and M.S.E., Accelerated Master's Program)
Cumulative GPA: 4.00/4.00

Philadelphia, Pennsylvania
Graduating: May 2026

Pine-Richland High School

Cumulative GPA: 4.00/4.00

Gibsonia, Pennsylvania
Graduated: June 2022

RESEARCH EXPERIENCE

In Context Learning of VLA with Human Video

Research Mentors: Mayur Naik, Dinesh Jayaraman

May 2025 – Present

Institution: University of Pennsylvania

- Enabling Vision-Language-Action (VLA) models to learn robot policies from human demonstration videos without expensive teleoperation data by leveraging scene graph representations as structured supervision signals
- Working hands-on with a Franka robotic arm conducting experiments on training $\pi_{0.5}$ to generalize with ICL

Planned Submission: Amish Sethi*, Jiani Huang*, Felix Zheng*, Brandon Yang, Chris Watson, Aurora Qian, Junyao Shi, Mayur Naik, Dinesh Jayaraman. In Context Learning of VLAs with Human Videos. Aim for CVPR 2026.

Delta Activations: A Representation for Finetuned Large Language Models

January 2025 – Present

Research Mentors: Mayur Naik, Ser-Nam Lim

Institution: University of Pennsylvania

- Developed method to represent finetuned language models by measuring shifts in internal activations relative to a base model, enabling model retrieval and embeddings for understanding finetuning effects
- Demonstrated models cluster cleanly by domain in existing hubs and enabled task-based retrieval of specialized models through few-shot embedding
- Led all experimental validation across multiple model families; finetuned and released over 700 open-source models on Hugging Face to facilitate community research in building reliable model ecosystems

Under Review: Zhiqiu Xu*, Amish Sethi*, Mayur Naik, Ser-Nam Lim. Delta Activations: A Representation for Finetuned Large Language Models.

ESCA: Contextualizing Embodied Agents via Scene-Graph Generation

January 2024 – Present

Research Mentor: Mayur Naik, Ser-Nam Lim

Institution: University of Pennsylvania

- Co-led development of VINE, a foundation model extracting spatio-temporal scene graphs from video
- Developed transfer protocols and finetuning pipelines demonstrating ESCA improves success rates up to 10% across multiple vision-language models on the EmbodiedBench benchmark

Publication: Jiani Huang*, Amish Sethi*, Matthew Kuo*, Mayank Keoliya, Neelay Velingker, JungHo Jung, Ziyang Li, Ser-Nam Lim, Mayur Naik. ESCA: Contextualizing Embodied Agents via Scene-Graph Generation. Accepted into NeurIPS 2025. **Spotlight Paper (top 3% of 20,000+ submissions)**.

Dolphin: A Programmable Framework for Scalable Neurosymbolic Learning

August 2024 – July 2025

Research Mentors: Mayur Naik, Eric Wong, Saikat Dutta

Institution: University of Pennsylvania

- Addressed performance bottlenecks in neurosymbolic frameworks by developing CPU-GPU hybrid execution strategy partitioning symbolic manipulations on CPU while vectorizing probabilistic computations on GPU
- Optimized map-reduce operations by implementing memory-efficient reductions eliminating unnecessary intermediate tensors while maintaining end-to-end differentiability
- Demonstrated $1.7\times$ to $62\times$ speedups across 13 benchmarks, achieving state-of-the-art accuracy on tasks where existing frameworks failed to converge or exhausted GPU memory

Publication: Aaditya Naik, Jason Liu, Claire Wang, Amish Sethi, Saikat Dutta, Mayur Naik, Eric Wong. Dolphin: A Programmable Framework for Scalable Neurosymbolic Learning. ICML 2025. 3 citations.

CLAM: Unifying Finetuning, Quantization, and Pruning

January 2024 – June 2024

Research Mentors: Mayur Naik, Eric Wong, Saikat Dutta

Institution: University of Pennsylvania

- Developed framework unifying parameter-efficient finetuning, quantization, and pruning for LLMs by reformulating optimization techniques as weight-based adaptations, enabling unlimited chaining of previously incompatible methods
- As lead developer and primary codebase contributor, demonstrated CLAM compositions match uncompressed models while using 86% fewer bits

Publication: Neelay Velingker, Amish Sethi*, Jason Liu*, William Dodds*, Zhiqiu Xu, Saikat Dutta, Mayur Naik, Eric Wong. CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules. ICML ES-FoMo

2024. 1 citation.

FIIGNET: Synthetic Data for Aquaponics

Research Mentors: Kelvin Fong

May 2023 – August 2023

Institution: National University of Singapore

- Created generative AI pipeline (FIIGNET) using PyTorch to synthesize images of fish with specified diseases for training early detection models in aquaponics systems
- Trained models on synthetic and real datasets, with FIIGNET improving disease detection accuracy by 17%
- Presented research paper and poster at SERIUS program at National University of Singapore

Functional genetic biomarkers of Alzheimer's Disease

November 2019 – January 2021

Institution: University of Pittsburgh

- Utilized machine learning, clustering, and dimensionality reduction algorithms in scikit-learn to identify genes expressed differently between Alzheimer's patients and control groups
- Developed predictive model achieving 98% accuracy in determining likelihood of Alzheimer's based on gene expression values from peripheral blood

Publication: Amish Sethi*, Andrew Ni*, and Alzheimer's Disease Neuroimaging Initiative. Functional genetic biomarkers of alzheimer's disease and gene expression from peripheral blood. *BioRxiv*. 2021. 8 citations.

WORK EXPERIENCE

Best in Grass | Remote Machine Learning Intern

December 2024 – December 2025

- Built large-scale structured dataset by extracting terpene and cannabinoid profiles from unstructured PDFs using cutting-edge vision-language models (table-transformer, InternVL)
- Applied supervised learning and clustering methods to map chemical compositions to user-reported effects
- Developed strain-effect prediction pipeline used for product recommendation systems

Roadbotics | Computer Vision Intern | Pittsburgh, PA

June 2021 – August 2021

- Used computer vision in TensorFlow to detect, classify, and locate traffic signs from input video
- Developed Mask-RCNN deep neural network achieving 90% accuracy in detecting traffic signs
- Model deployed by Pennsylvania state government to maintain inventory of road assets

MENTORSHIP AND ACADEMIC SERVICE

Head Teaching Assistant, CIS 7000: Large Language Models

Fall 2024

University of Pennsylvania

- Served as Head TA for Penn's first dedicated LLM course with 120+ students, covering theory, design, training, compression, deployment, and application of large language models
- Planned course curriculum, designed homework assignments, held office hours, and created lecture slide decks
- Delivered lectures on efficient finetuning, adaptation, and evaluation; course received TA quality rating of 3.15/4 and overall quality rating of 3.01/4

Undergraduate Research Mentor, Penn PURM Program

Summer 2024

- Mentored five undergraduate students on the CLAM project, teaching research methodology in machine learning, working with LLMs, and developing scalable optimization frameworks

Grant for Faculty Mentoring Undergraduate Research (GfFMUR)

December 2024

- Authored successful proposal awarded \$8,000 by University of Pennsylvania to fund undergraduate research mentorship on neurosymbolic AI

Peer Reviewer

- ICML 2024 ES-FoMO Workshop, AAAI 2026, ICLR 2026

HONORS AND AWARDS

- NeurIPS 2025 Spotlight Paper for ESCA paper (top 3% of 20,000+ submissions)
- First Place, International Public Policy Forum (IPPF) (2022)
- ISEF (International Science and Engineering Fair) Finalist – Genetics Research Project (2021)
- Verbal Commendation, Harvard National Model United Nations (2023)
- First Place Programming Award, FIRST Tech Challenge Pennsylvania State Championship (2022)
- Second Place, FIRST Tech Challenge World Championship (2022)

GitHub: <https://github.com/AmishSethi>, <https://github.com/ASethi04>

Website: <https://amishsethi.github.io/personal-website/>